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Abstract
The charging infrastructure location problem is becoming more significant due to the exten-

sive adoption of electric vehicles. Efficient charging station planning can solve deeply

rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle

consumers. In the initial stage of introducing electric vehicles, the allocation of charging sta-

tions is difficult to determine due to the uncertainty of candidate sites and unidentified charg-

ing demands, which are determined by diverse variables. This paper introduces the

Estimating the Required Density of EV Charging (ERDEC) stations model, which is an ana-

lytical approach to estimating the optimal density of charging stations for certain urban

areas, which are subsequently aggregated to city level planning. The optimal charging sta-

tion’s density is derived to minimize the total cost. A numerical study is conducted to obtain

the correlations among the various parameters in the proposed model, such as regional

parameters, technological parameters and coefficient factors. To investigate the effect of

technological advances, the corresponding changes in the optimal density and total cost

are also examined by various combinations of technological parameters. Daejeon city in

South Korea is selected for the case study to examine the applicability of the model to real-

world problems. With real taxi trajectory data, the optimal density map of charging stations

is generated. These results can provide the optimal number of chargers for driving without

driving-range anxiety. In the initial planning phase of installing charging infrastructure, the

proposed model can be applied to a relatively extensive area to encourage the usage of

electric vehicles, especially areas that lack information, such as exact candidate sites for

charging stations and other data related with electric vehicles. The methods and results of

this paper can serve as a planning guideline to facilitate the extensive adoption of electric

vehicles.
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Introduction
To mitigate the impact of climate change and to maximize the sustainability of our society,
numerous governments encourage auto industries to develop alternative transportation sys-
tems to replace conventional modes of transportation. The electric vehicle (EV) is a promising
alternative because it can solve many environmental problems by reducing carbon emissions,
which contribute to the reduction of air pollution in urban areas. EVs have become increas-
ingly beneficial from an environmental perspective and an economical perspective compared
with conventional vehicles [1]. Governmental investments, regulations and incentives are
being developed to encourage the adoption of EVs [2, 3]. Numerous major auto manufacturers
demonstrate interests in EVs and have developed passenger and commercial vehicles [4].

Despite these advantages, significant barriers against the extensive adoption of EVs exist;
they currently represent a small penetration of markets in EV service [5]. The most frequent
concerns about EVs are the limited driving range, charging station availability, and high vehicle
purchase costs [6]. The range anxiety caused by limited driving range and the low availability
of charging stations discourage the acceptance by new consumers and restrain the economic
benefits of EVs. For instance, the early adopters of EVs may use their vehicles for only short
trips and drive fewer average miles than their travel experience without range anxiety [7]. The
efficient allocation of charging stations for EVs is important to the adoption of the EV system
because it is expected to resolve concerns about limited driving range and charging station
availability. Another critical issue for adopting an EV is the charging process. The charging
process requires a greater amount of time than the time required for gasoline or diesel fueling
systems. Charging may require several hours, even with a fast charging system [8]. For efficient
allocation of charging stations for an EV, the delay time in a queue caused by the longer charg-
ing time should be considered. To encourage the usage of EVs for a low-emission society, well-
organized charging infrastructure planning that considers range anxiety and delay time by
charging queue is required.

The problem related to charging infrastructure is critical to the development of an EV sys-
tem [5]. The lack of charging infrastructure can interrupt the adoption of EVs, which may
reduce many incentives for investing charging infrastructures. Although charging stations have
been constructed in many cities, only few studies have determined the optimal locations of
charging stations for maximizing electricity-based travel [8]. Some recent studies have
attempted to determine where to establish charging stations to reduce the range anxiety and to
improve the recharging efficiency. Shukla et al. determined optimal locations based on the
maximum impact on the number of recharged EVs [9]. Wang’s model has been performed for
determining the minimum recharge time and length of stay at each location [10]. The objective
of Nie and Ghamani’s’s model is to determine the battery size and charging capacity with mini-
mal social costs [11]. Various mathematical models have been proposed to determine optimal
locations for refueling, charging and battery swapping stations. Nichlolas et al. proposed a geo-
graphic information system (GIS)-based model that employs the p-median [12]. Lin et al.
developed the fuel-travel-back approach, which employs the distribution of vehicle miles trav-
eled (VMT) [13]. Wang and Lin’s model is a variant path-based set covering model [14]. Kubi
et al. proposed a flow refueling location problem (FRLP) [15]. Dong et al. utilized an activity-
based assessment method to determine an optimal location for siting charging stations [7]. Pan
et al. developed a stochastic model to determine the best location for battery swapping stations
in a vehicle to power grid [16]. Jung et al. proposed an itinerary interception location problem
that applies to an EV taxi [17]. In these previous studies, traffic flow volume data [18], the dis-
tribution of existing petrol refueling stations data [19] and vehicles ownership data [20] were
employed to estimate the charging demand. The simulation of trips based on origin-
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destination (OD) pairs have been conducted to determine the charging demand [17, 21, 22].
Real-world trip data were also employed for analyzing the charging demand; however, sample
data for private vehicles are limited [7, 8].

Galus et al. proposed an integrated method comprising vehicles technology, transportation
simulation, and power system [23]. This method can assess the impacts of electric mobility on
those three domains in future technology advances. Bayram et al. presented the method of allo-
cating a network of fast charging station, which is minimizing the cost function of charging
capacity, speed of charging and vehicles arrival rate [24]. Yudovina et al. considered a decen-
tralized routing design and pricing strategies through social optimal function with little to no
queueing [25]. They also incorporated technological constraints and heterogeneity of charging
preferences into the problem. Another social optimal function framework based on driving dis-
tance and queueing delays is proposed in Hung et al. [26]. Wirges et al. proposed a dynamic
spatial model of charging infrastructure, which consists of sub-models simulating EV owner-
ship, charging demand and allocation of charging station [27]. Liu et al, proposed the mathe-
matical model minimizing the total costs of investment cost, maintenance cost, operation
costs, and network loss costs in the planning period [28]. Chen et al. presented the cost func-
tion minimizing EV users’ station access costs with the consideration of parking demand [29].
An optimal design framework for battery charging/swap station based on life cycle cost (LCC)
is presented in Zheng et al [30].

As the use of EVs has gradually increased, various meaningful studies have been conducted
to analyze the charging location problem, charging demand, and optimal planning. Various
aspects of optimizing the performance of charging station infrastructure have been examined
in the literature recently. However, the aspect of deriving the optimal density of charging sta-
tions has rarely been studied. In this study, we introduce an analytical approach to estimating
the optimal density of charging stations with consideration of previous studies. The objective
of this study is to provide the approximate optimal density of charging stations for wide areas,
which are subsequently aggregated to conduct city-level planning. In the initial planning phase
of introducing EVs, decision makers such as local governments who installing charging infra-
structures, may gain insight from the results in the deployment planning phase. A detailed
deployment solution, such as determining the exact locations for stations and setting a diverse
number of chargers at each station is beyond the scope of this paper. The results of this paper
help establish a detailed deployment plan. The method and results of this paper can present an
approximate solution for efficiently allocating charging stations and provide a planning guide-
line for governments, even when no reference data of real EV travel patterns and exact candi-
date locations of charging stations. The following sections describe a model to estimate the
required density of EV charging stations, and a numerical study and case study are conducted
based on the proposed model.

Estimating the Required Density of EV Charging Stations (ERDEC)
Model

ERDEC scheme
To introduce Estimating the Required Density of EV Charging stations (ERDEC) model, we
consider a simplified situation for a given unit square area. The side length of this unit area is
L; thus, the area size is L × L, as illustrated in Fig 1. The charging stations (CSs), which are
expressed as black dots in Fig 1(A), are assumed to be evenly distributed with equivalent spac-
ing. Let d be the distance between two CSs. The density of CSs can be expressed by L and d.

The objective of this model is to determine the optimal density that yields minimal cost.
The cost is composed of several items, such as the access cost of CSs, the delay time cost of
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charging, charger installation costs and the operating cost of CSs. To calculate these costs, we
form the following assumptions: (1) the vehicles randomly pass a given area in a vertical or
horizontal direction; (2) each CS has same number of chargers; (3) when a charging request
event occurs (based on the state of charge (SOC) level), the EVs should go to the nearest CS.
(4) CSs are public, and fast charging systems are adopted in all CSs. A detailed description of
each assumption is demonstrated in the following section.

The first and second assumptions reflect homogeneous environments. The first assumption is
assumed because the layout of the street network is a grid type network in an urban area. We
assumed that the random distribution exhibits a uniform probability distribution. The third
assumption implies that the charging points (CPs) generate a vehicle’s itinerary interception, as
illustrated in Fig 1(B). We assumed that a charging event occurs whenever the SOC level is less
than 15% of the charging level because the warning light for the shortage of battery is activated at
that level. Although drivers do not always charge at 15% of the SOC level, they recognize the need
to charge and seek charging stations. For the fourth assumption, although the majority of EVs
tend to use home chargers (slow charging system) due to the lack of public charging infrastruc-
tures, this study considers drivers who do not develop anxiety regarding an EV driving range.
Similar to conventional gas stations, public CSs and fast charger systems should be installed.

Mathematical formulation
The objective of this subsection is to define the related parameters of the ERDEC model and to
derive an equation by expressing density.

The number of charging stations (CSs). The number of CSs is denoted by Ncs. Let δ be
the density of CSs, which is the number of CSs over the unit area size, as expressed by the fol-
lowing equation:

d ¼ Ncs

Area size
¼ Ncs

L2

Fig 1. ERDEC scheme.

doi:10.1371/journal.pone.0141307.g001
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Thus, the number of CSs is defined by the following form:

Ncs ¼ dL2 ð1Þ

Additional access distance. Let dA be the access distance from CP to CS, where dA
2 (0, d), as illustrated in Fig 1(B). Therefore, the expectation of dA is defined as E(dA) = d

2
. Let

lEVdis
denote the available distance after charging. In this case, dA should be less than 0.15�lEVdis

because the charging events occur at a level below 15% of the SOC level, that is, the constraint
of dA.

EðdAÞ ¼
d
2
for dA � 0:15lEVdis

where lEVdis
is the available distance after charging.

The number of CSs on one side is L
d
; thus, the total number of CSs in the area is ðL

d
Þ2.

Then, we have

Ncs ¼
L
d

� �2

ð2Þ

From Eqs (1) and (2), the expectation of dA is

EðdAÞ ¼
1

2
ffiffiffi
d

p

The additional trip (additional access distance) is divided into two cases regardless of
whether the nearest charging station is located in the travelling direction. Compared with the
original trip, the original trips are denoted by red lines with by red dots, as illustrated in Fig 2.

Case 1) opposite direction
In the case that the nearest charging station is located on the opposite direction of an itiner-

ary, E(Additional trip_case1) is d.
Case 2) travelling direction
In the case that the nearest charging station is located in the same direction of an itinerary,

E(Additional trip_case2) is d
2
.

Thus, we obtain

EðAdditional tripÞ ¼ 3

4
d ¼ 3

4
ffiffiffi
d

p ð3Þ

The number of CP. The number of CPs is denoted as Ncp and is directly associated with
the charging demands. To estimate the charging demand, we need to quantify the number of
vehicles required by charging. Let Nveh be the number of passing electric vehicles per T hour,
where T is the time state. The number of charging vehicles, which is the number of CPs (Ncp),
is calculated subject to the length of the area L and the available distance after charging, lEVdis

[available distance in this model is 0:85lEVdis
because charging events occur below 15% of the

SOC level]. When a vehicle passes the L length of distance with 0:85lEVdis
limited driving range,

the required number of charging points in a cell is L
0:85lEVdis

� �
. For example, if L is 0:85lEVdis

, the

vehicles passing the cell should have a one-time charging event, regardless of the SOC level at
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the time of entering the cell. If L is less than 0:85lEVdis
, the expected number of charging points

is stochastically calculated as L
0:85lEVdis

� �
. Then, the total number of charging points (number of

charging vehicles) is defined by the following equation:

Fig 2. Additional trip for charging.

doi:10.1371/journal.pone.0141307.g002
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Ncp ¼ Nc veh ¼
LNveh

0:85lEVdis

ð4Þ

Delay time in queue for charging. A critical obstacle to EV adoption is the extended
charging time. Thus, the delay time caused by a charging queue is considered to be an impor-
tant part for estimating the density of CSs. If we install a sufficient number of CSs to match the
peak time charging demand, no delay time for charging would be incurred. However, this case
may cause a waste of budget and public resources during off-peak time periods. To obtain an
optimal solution, we should consider both the peak time and off-peak time demands. There-
fore, we consider two states (peak time state and off-peak time state) in this study by assuming
that the delay disappears as the state changes from peak time to off-peak time. The triangular
area size formed by the peak time arrival rate, off-peak time arrival rate and service rate repre-
sents the delay time, as illustrated in Fig 3(A).

Let Tf_ch denote the charger’s full charging time. The service rate of a charger is 1
Tf ch

, and the

constraint indicates that Tf_ch is less than 1T. Then, the total service rate (μts) in this area is
expressed by the following equation:

mts ¼
kNcs

Tf ch

¼ kdL2

Tf ch

; for Tf ch � 1T ð5Þ

where k is the number of chargers at each CS.
Because the delay should disappear in 2T (two states), we assume that the total number of

charging vehicles during peak time and off-peak time is the equivalent to the number of

Fig 3. Delay time.

doi:10.1371/journal.pone.0141307.g003
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charging vehicles during 2T hours, as expressed by the following equation

TNc veh p þ TNc veh op ¼ 2TNc veh ð6Þ

where Nc_veh_p is the number of charging vehicles during peak times and Nc_veh_op is the num-
ber of charging vehicle during off-peak times.

Let p be the proportion of peak time demand. In this case, the proportion of off-peak time
demand is (1 –p). The range of p extends from 0.5 to 1 because the peak time demand must
exceed the off-peak time.

p : ð1� pÞ ¼ Nc veh p : Nc veh op ð7Þ

where p is the proportion of peak time demand 0.5� p� 1.
From Eqs (6) and (7), we derive

Nc veh p ¼ 2pNc veh ð8� 1Þ

Nc veh op ¼ 2ð1� pÞNc veh ð8� 2Þ

If μts < Nc_veh, the delay does not disappear within 2T (two states) due to the lack of CSs. No
additional delay time is incurred when μts > Nc_veh_p due to the overestimation of CSs. Thus,
the proper range of service rate is Nc_veh � μts � Nc_veh_p, as illustrated in Fig 3(B), which
becomes the constraint of delay time equation.

As illustrated in Fig 3(B), the area size of the triangle that represents the delay time is calcu-
lated as

area size ¼ ð1T þ lÞ � TðNc veh p � mtsÞ
2

where

l ¼ TðNc veh p � mtsÞ
ðmts � Nc veh opÞ

ð9Þ

From Eqs (8-1), (8-2) and (9), the triangular size is calculated as follows:

area size ¼ T2Nc vehð2p� 1Þð2pNc veh � mtsÞ
ðmts � 2ð1� pÞNc vehÞ

� �
ð10Þ

Then, the total delay time in the queue for charging is expressed with Eqs (4), (6) and (10)
as the following functional form

delay time ¼ T2LNvehð2p� 1Þð2pLNvehTfch
� 0:85lEVdis

kdL2Þ
0:85lEVdis

ð0:85lEVdis
kdL2 � 2ð1� pÞLNvehTfch

Þ

( )
ð11Þ

where μts� Nc_veh; if μts > Nc_veh_p, the delay time is zero.

Cost model of ERDEC
Because the objective of the ERDEC model is to obtain the optimal density that yields the low-
est cost, the total cost should be calculated. Assume that the access cost from CP to CS is CostA,
the delay cost in the charging queue is CostD, the fixed installation cost of the chargers is CostI,
and the operating cost of CSs is CostO. Minimizing the sum of CostA, CostD, CostI and CostO is
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employed as the objective function of the ERDEC model.

minðTotal CostÞ ¼ CostA þ CostD þ CostI þ CostO

The detailed expression of the total cost is as follows:

Total cost ¼ ½c1 � total additional tripþ c2 � total delay timeþ c3
� the total number of chargersþ c4 � the total number of stations�

where

c1 = value of distance per km

c2 = value of time per hour

c3 = charger installation cost per hour

c4 = operating cost of charging station per hour

The time period that calculated the total cost reflects 2T hour due to the delay time. The
methods for calculating each cost are described as follows:

CostA: [c1 × total additional trip]. CostA is the total additional trip cost. It can be
expressed as the multiplication of the total additional trips and the value of distance. The total
additional trip from a CP to a CS is expressed by Eq (3) as follows:X

i22TNcveh

additional tripi ¼ EðAddtional tripÞ � 2TNcveh

From Eqs (3) and (4), the total additional trip is

Total additional trip ¼ 3TLNveh

1:7
ffiffiffi
d

p
lEVdis

constraint:

d � 0:15lEVdis

This constraint is derived by the expression of density as follows:

d � 1

ð0:15lEVdis
Þ2

We obtain

CostA ¼ c1
3TLNveh

1:7lEVdis

ffiffiffi
d

p
 !

ð12Þ

constraint:

d � 1

ð0:15lEVdis
Þ2

CostD: [c2 × total delay time]. CostD is the total delay time cost in the queue for charging.
It can be expressed as the multiplication of the total delay time and the value of time. The total
delay time has been derived in the previous section (Eq (11)). If μts > Nc_veh_p, the delay time is
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always zero. According to Eqs (5) and (8-1), if d >
2pNvehTf ch

0:85kLlEVdis
, the delay time is zero.

Total delay time ¼

T2LNvehð2p�1Þð2pLNvehTfch
�0:85lEVdis

kdL2Þ
0:85lEVdis

ð0:85lEVdis
kdL2�2ð1�pÞLNvehTfch

Þ

 !
; if d � 2pNvehTf ch

0:85kLlEVdis

0 ; if d >
2pNvehTf ch

0:85kLlEVdis

8>>>><
>>>>:

constraint:

d � NvehTf ch

0:85kLlEVdis

This constraint is derived from μts � Nc_veh, which is the constraint of the Eq (11).
Therefore, CostD is

CostD ¼
c2

T2LNvehð2p�1Þð2pLNvehTfch
�0:85lEVdis

kdL2Þ
0:85lEVdis

ð0:85lEVdis
kdL2�2ð1�pÞLNvehTfch

Þ

 !
; if d � 2pNvehTf ch

0:85kLlEVdis

0 ; if d >
2pNvehTf ch

0:85kLlEVdis

ð13Þ

8>>>><
>>>>:

constraint:

d � NvehTf ch

0:85kLlEVdis

CostI: [c3 × the total number of chargers]. CostI is the total installation cost of the char-
gers. It can be expressed as the multiplication of the total number of chargers and the installa-
tion cost of the chargers. The total number of chargers is kNcs, where k is the number of
chargers at each CS. Thus, using Eq (1), the total number of chargers is expressed as follows:

The total number of chargers ¼ kNcs ¼ kdL2

Then, we obtain

CostI ¼ c32TkdL
2 ð14Þ

CostO: [c4 × the total number of stations]. CostO is the total operating cost of CSs. It can
be expressed as the multiplication of total number of CSs and the operating cost of a CS. The
total number of CSs is defined by Ncs, which is denoted as δL2 in Eq (1).

Therefore,

CostO ¼ c42TdL
2 ð15Þ
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The objective function of ERDEC
The objective function and constraint. The total cost (TC) can be written based on the

previous subsection (Eqs (12), (13), (14) and (15)) as

TC ¼
c1

3TLNveh

1:7 lEVdis

ffiffiffi
d

p
 !

þ c2
T2LNvehð2p�1Þð2pLNvehTfch

�0:85lEVdis
kdL2Þ

0:85lEVdis
ð0:85lEVdis

kdL2�2ð1�pÞLNvehTfch
Þ

 !
þ c32TkdL

2 þ c42TdL
2; if d � 2pNvehTf ch

0:85kLlEVdis

c1
3TLNveh

1:7 lEVdis

ffiffiffi
d

p
 !

þ c32TkdL
2 þ c42TdL

2; if d >
2pNvehTf ch

0:85kLlEVdis

8>>>>><
>>>>>:

where

c1 = value of distance per km

c2 = value of time per hour

c3 = charger installation cost per hour

c4 = operating cost of charging station per hour

L = one side length of the area

Nveh = the number of passing electric vehicles per T hour

p = proportion of peak time demand, 0.5� p� 1

k = the number of chargers at each charging station

Tf_ch = full charging time, Tf_ch � 1T

lEVdis = available EV mileage after charging

T = time state

constraint:

d � max
1

ð0:15lEVdis
Þ2 ;

NvehTf ch

0:85kLlEVdis

 !

The first derivative. The decision variable of TC is δ. The first derivatives of TC respect to
δ is as follows:

@TC
@d

¼
c32TkL

2 þ c42TL
2 � c1

3TLNveh

3:4d3=2lEVdis

 !
� c2

kL3ð2p� 1ÞT2Nveh

0:85kL2dlEVdis
� 2Lð1� pÞNvehTf ch

 !
� c2

kL3ð2p� 1ÞT2Nvehð2LpNvehTf ch � 0:85kL2dlEVdis
Þ

ð0:85kL2dlEVdis
� 2Lð1� pÞNvehTf chÞ2

 !
; if d � 2pNvehTf ch

0:85kLlEVdis

c32TkL
2 þ c42TL

2 � c1
3TLNveh

3:4d3=2lEVdis

 !
; if d >

2pNvehTf ch

0:85kLlEVdis

8>>>>><
>>>>>:

Constraint is d � max 1

ð0:15lEVdis Þ
2 ;

NvehTf ch

0:85kLlEVdis

� �
.

With this differential equation, we can obtain the optimal density. In the next section, the
numerical results of applying the objective function and differential equation of ERDEC are
presented.
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Numerical Study Based on ERDECModel

Data description
To demonstrate the effect of the ERDEC model, specific numerical information, such as EV
driving history or charging time data, is required. The values of these parameters can be flexi-
ble according to the locational characteristics and vehicle type. This study employs real EV
taxi operation data in Daejeon city, South Korea, which were collected in September 2013
(Daejeon Techno Park, 2014). Although these data are gathered from EV taxis, they provide
information about EV consumption efficiency, available driving range after charging, and
charging time. Table 1 is the average maximum running distance collected from the EV taxi
operation experiments. The experimental data are gathered from three EV taxis in Septem-
ber, during which the average temperature is 21.4°C. The EV taxi model is Renault SM3 Z.E
with a battery that has a capacity of 22 kwh. The average maximum running distance is 143.5
km, and the average distance per power consumption is 6.52 km/kWh. The average charging
time of EV taxis from 15% of the SOC level to 100% of the SOC level is approximately one
hour in September.

Lee and Choi [31] estimated the value of travel time. They determined that the average
value of time for passenger vehicles is 8,604 won in 2011. Considering the average rate of infla-
tion (2.5%) in three years, the average value of time in 2014 is 9,266 won.

The installation cost of a fast charger may include not only the cost of the charger material
and the cost of labor but also the cost of the electric transformer and the cost of pulling high-
voltage power lines because grid and transformer upgrades are required if installations are not
performed at high voltage gird levels. The total cost of a fast charger installation is approxi-
mately 26,700,000 won/ea [32]. The operating cost of CSs can vary depending on additional
facilities. Because the labor cost is the most expensive part of the CS operating costs, it is a vital
component for analyzing the effect of the ERDEC model. Thus, the labor cost is primarily con-
sidered as the CS operating cost in this study. The labor cost, which is 5,210 won, is calculated
by the minimum wage in Korea in 2014 [33]. Table 2 summarizes these costs, which serve as
the coefficient values of the objective function.

The other parameters of the ERDEC model are listed in Table 3. These values serve as the
baselines of the model. As previously mentioned, we set the parameters Tf_ch and lEVdis

to be 1

Table 1. Experimental data of real EV taxi.

September 2013 Travel distance (km/day) Electricity consumption (kWh) Consumption efficiency (km/kWh) Available range (km)

1st week 85.84 12.66 6.78 149.2

2nd 138.92 21.22 6.55 144.1

3rd 97.70 15.24 6.41 141.0

4th 133.14 20.97 6.35 139.7

Average 113.90 17.52 6.52 143.5

doi:10.1371/journal.pone.0141307.t001

Table 2. Compilation of information about EV driving and charging.

Coefficient factors Cost Remarks (EV)

c1 16.9 won/km 1 kWh = 110 won, 6.52 km/kWh

c2 9,266 won/hr

c3 508 won/hr 26,700,000 won/ea (assumed life cycle is 6 years)

c4 5,210 won/hr Minimum wage of labor in 2014

doi:10.1371/journal.pone.0141307.t002
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hour and 143.5 km, respectively, because they are technological parameters. Other parameters
include the regional parameter values, which are arbitrarily defined as the baseline of the
model.

Given these parameters, as depicted in Fig 4, TC shows that the optimal solution (δopt) is
8.65, where the optimal total cost is 107,623 won. The triangular point (δon_demand) in Fig 4 rep-
resents the density value when the supply of the CSs matches the demand of all charging vehi-
cles. At this point, δon_demand is 9.83 and the total cost is 112,542 won. If the CSs are installed
according to the charging demands, public resources may be wasted. The proposed ERDEC
model in this study demonstrates a 12% density reduction and a 4.3% cost reduction in the
baseline case.

Table 3. Parameters as the baseline of model.

Parameter Description Value

Technological Tf_ch full charging time 1 hr

lEVdis available EV distance 143.5 km

Regional L one side length of the area 1 km

Nveh the number of passing EV per T hr 1000

p proportion of peak time demand 0.6

k the number of chargers at station 1

T time state 1

doi:10.1371/journal.pone.0141307.t003

Fig 4. Plot of ERDECmodel (baseline).

doi:10.1371/journal.pone.0141307.g004
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The effect of regional parameters
To comprehensively analyze the results of different conditions, we compare the results in mul-
tiple conditions by changing the regional parameter values. Because these parameters reflect
the regional characteristics, the objective of this subsection is to describe the correlation
according to the variations in the parameters instead of calculating the proper values of the
parameters.

The length of area: L. Parameter L is the searching radius for estimating the density of CSs
according to charging demands. When the number of charging demands remains constant, a
larger L value has a lower density value but requires a higher total cost, as plotted in Fig 5.

The proper length of L for estimating density is dependent on the study sites and the num-
ber of passing vehicles. The parameter L is determined based on the characteristics of a study
area, such as traffic volume, land use, and administrative district.

The number of passing EVs: Nveh. Parameter Nveh is the most important value for the
ERDEC model because it is the input value that directly reflects the charging demand. This
value can be classified by the current traffic flow pattern on a study site or by the predicted
number of future EVs. The optimal density and the total linear cost increase as the number of
passing EVs increases, as shown in Fig 6.

Fig 5. The variation in L.

doi:10.1371/journal.pone.0141307.g005
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The proportion of peak time demand: p. Parameter p denotes the proportion of peak
time demand, which reflects the ratio of peak time and off-peak time demands during the time
period 2T. A higher p value reflects a significant difference between the peak time demand and
off-peak time demand; thus, the total delay time increases. Fig 7 describes the plot of the opti-
mal density and the total cost according to the variation in p. The optimal density and total
cost have a positive correlation with p.

The number of chargers at each charging station: k. Because the ERDECmodel is a sim-
plified model for approximately estimating the density for homogeneous conditions in the unit
cell, the number of chargers cannot be dynamically adjusted for each station. Although the k
value is equivalent for the same cell, the effect of k variations can be analyzed. Because the operat-
ing cost of a CS is more expensive than the installation cost of a charger, the number of chargers
at each CS, k, shows a negative correlation with the optimal density and the total cost, as illus-
trated in Fig 8. To minimize the total cost and increase efficiency, additional chargers should be
installed at one CS if no constraints exist, such as location size for installation and the maximum
number of chargers at each station. In the baseline case, in which L is 1 km and Nveh is 1000, the
optimal density has the same value as the on_demand density (the right side end point of plot is

Fig 6. The variation inNveh.

doi:10.1371/journal.pone.0141307.g006
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on_demand density) if k is greater than three, as illustrated in Fig 8. In Fig 8(B), the total number
of chargers (9.84) remains constant when k exceeds three. To minimize the total number of char-
gers, a k value of 1 or 2 is appropriate in the baseline case. The ERDECmodel is suitable because
a small number of chargers tend to be installed in many locations at the initial phase of introduc-
ing an EV. The proper value of k can be selected based on regional characteristics.

The effect of technological parameters
Problems with range anxiety and long charging times can be addressed by future technological
development. In this section, changes in the optimal density and total cost are examined by the
variation in the technological parameters. The quantitative benefits of technological improve-
ments can be predicted with the proposed model.

The full charging time: Tf_ch. Technological advancements in battery and charger systems
may reduce the required charging time. Fig 9 indicates that both the optimal density and the
total cost decrease with a reduction in charging time.

If the charging time decreases to one half of the current time duration (from 1 hr to 0.5 hr)
by technological improvements, the optimal density would decrease by 44.9% and the total
cost would be reduced by 47.7%.

Fig 7. The variation in p.

doi:10.1371/journal.pone.0141307.g007
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Available distance after charging: lEVdis . Another significant benefit from future advance-

ments in battery-related technologies is an increased EV distance after charging. As lEVdis
gradu-

ally increases, the optimal density and total cost decrease, as illustrated in Fig 10.
If the available distance after charging (lEVdis

) increases by twice the current distance (from

143.5 km to 287 km) by technological improvements, the optimal density would decrease by
50.1% and the total cost would be reduced by 49.9%; When lEVdis

is 287 km, the optimal density

is 4.32 and the total cost is 53843 won.

The effect of coefficient factors
In the previous subsections, the variations in the regional and technological parameters are
analyzed. This subsection examines the effect of coefficient factors. Table 2 lists the coefficient
factors of general EVs. No significant differences in the coefficient values were observed for the
same country. This study uses taxi data to conduct a comparison with other situations. The val-
ues of distance and time for taxis are greater than the values of distance and time for other auto
vehicles, as shown in Table 4. These values are extracted from the Daejeon city report for taxi
operation cost [34]. In the case of the baseline parameter values for EV taxis, the optimal den-
sity (δopt) is 9.65 and the total cost at this density point is 115,543 won. The analysis with Fig 11
indicates that the difference between the optimal density and the density on demand for EV

Fig 8. The variation in k.

doi:10.1371/journal.pone.0141307.g008
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taxis is less than the difference between the optimal density and the density on demand for gen-
eral EVs. This finding reflects that the installation of additional CSs for EV taxis is required
because the value of time for taxis is much higher than the value of time for general auto
vehicles.

Fig 9. The variation of Tf_ch.

doi:10.1371/journal.pone.0141307.g009

Fig 10. The variation in lEVdis .

doi:10.1371/journal.pone.0141307.g010
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Case Study: Application to the Real World
To demonstrate the application of the ERDEC model to the real world, Daejeon city, South
Korea is selected as an experimental study area. Daejeon city covers an area of 539.97 km2 with
a population greater than 1,550,000. Daejeon has attempted to transform to a low-carbon city
via numerous transportation programs, including incentives for electric vehicle use. Thus, Dae-
jeon needs an initial plan for the efficient deployment of charging infrastructures. Fig 12 pres-
ents the Daejeon area divided by 1 km × 1 km squares, which is employed as the base unit area
in the ERDEC model. The total number of squares is 315. In this area, the ERDEC provides an
approximate analytical solution for planning the distribution of CSs.

The optimal CS density for each cell is calculated by the ERDEC model. The parameters
Tf_ch, lEVdis

, L, k, p and T utilize the default value of the ERDEC baseline model, as shown in

Table 3. The parameter Nveh (the number of passing EVs) is the input value that considerably
reflects the regional characteristics of each cell. In this instance, Nveh is calculated from the Dae-
jeon taxi data. The Daejeon taxi data include vehicle IDs, event occurrence time, GPS coordi-
nates, and passenger presence; they are recorded every 15 seconds. We select the data from
08:00 to 09:00 in Sep. 23, 2013. Based on the GPS location data, we generate the vehicle trajec-
tory lines using a geographic information system (GIS) and calculate the number of passing
vehicles in each cell. The total number of operating vehicles during the study time period is
955. The total number of passing vehicles (lines) in all cells is 12866, whereas the total length of
trips in all cells is 13133.16 km. The number of passing vehicles in each cell ranges from 0 to

Table 4. Coefficient factors of EV taxis.

Coefficient factors Cost Remarks (EV taxi)

c1 604.5 won/km revenue/day: 200,002 won, distance/day: 330.89 km

c2 20,000 won/hr operating time/day: 10 hr

c3 508 won/hr same as passenger EV

c4 5,210 won/hr same as passenger EV

doi:10.1371/journal.pone.0141307.t004

Fig 11. Comparison between passenger EV and EV taxi.

doi:10.1371/journal.pone.0141307.g011
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305, and the average number of passing vehicles is 40.84. Fig 13 shows the passing trajectories
of taxi data for the cells in the Daejeon area. The recommended parameters are listed in
Table 5.

In this case, the coefficient factors for the EV taxis (Table 4) are employed because the Nveh

value is calculated from the taxi data. With the scenario setting parameters, the subject of this
application example is to generate the optimal density map of CSs in Daejeon for 955 of the
operating EV taxis without driving-range anxiety. Fig 14 and Table 6 show the results. The
average optimal density is 0.35, the median is 0.09, and the optimal density ranges from 0 to
2.65. The sum of the density values is 111.8. The sum of the density values indicates the total
number of charging stations. In this case, the number of total charging stations is equivalent to
the number of total chargers. The number of charging stations may not seem to be sufficient
because k is 1. In addition, the number of charging stations for EV is inevitably large to achieve
the efficiency of a general gas station because the charging time is much longer than the fueling
time (the charging time is approximately 60 minutes, whereas the fueling time is approximately

Fig 12. Daejeon area divided by 1 km×1 km cells.

doi:10.1371/journal.pone.0141307.g012
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5 minutes) and the frequency of charging is significant due to the relatively short driving range.
After an examination of the results map, the unit areas with relatively high values (more than
2.0) are located near the downtown and public transit stations. This finding provides an

Fig 13. Nveh in each cell.

doi:10.1371/journal.pone.0141307.g013

Table 5. Recommended parameters.

Parameter Description Value

Technological Tf_ch full charging time 1 hr

lEVdis available EV distance 143.5 km

Regional L one side length of the area 1 km

k the number of chargers at station 1

T time state 1

Nveh the number of passing EV 0 to 305

p proportion of peak time demand 0.6

doi:10.1371/journal.pone.0141307.t005
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approximate solution for distributing the CSs in the economic planning phase. Based on this
initial result, the decision makers who install CSs can develop detailed plans for locating a CS
within a cell or a group of cells and integrate neighboring cells with low density values.

Fig 14. The results map of the optimal density.

doi:10.1371/journal.pone.0141307.g014

Table 6. The results table.

Basic statistics Value

Average optimal density 0.3549

Sum of optimal density values 111.8

Minimum optimal density 0

Maximum optimal density 2.65

Median optimal density 0.09

Number of cells 315

Total number of vehicles (lines) in all cells 12866

Total number of CSs 111.8

Total cost 1384112

doi:10.1371/journal.pone.0141307.t006
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To determine the change in the results according to L size, the results maps with different L
sizes are generated as illustrated in Fig 15. The chart shows the minimum value when L is 2
km. In the case in which L is 2, the total number of CSs is 109.04 and the total cost is 1358631.

In terms of minimizing the total cost of all cells, the results map for an L size of 2 km as the
unit of analysis is suitable in the Daejeon case. If L is longer, the selection of an exact candidate
location of CSs at the next detailed deployment planning phase is uncertain because the size of
the unit cell increases. Thus, decision makers should select an appropriate results map after
identifying the advantages and disadvantages.

Conclusions
In the initial stage of introducing EVs, adequate installation of charging infrastructure is crucial
for supporting the fast and timely transition to a low-emission society with EVs. To support
the determination of CS allocation without wasting public resources, an optimal model for
minimizing total cost and matching charging demands is needed. For the same number of
vehicles (EV and internal combustion engine vehicles (ICEVs)), the charging stations for EVs
are more critical than gas stations for ICEV because EVs have a greater frequency of charging
due to the short driving range and because the charging time is much longer than the fueling
time. Thus, the efficient deployment plan of charging infrastructure is critical. This paper sug-
gests the ERDEC model as a solution to this problem. This model provide an analytical solu-
tion for estimating the optimal density of CSs in the planning phase. The cost of the optimal
solution is lower than the total cost of the solution of matching the charging demands while
preventing the failure of charging. With this model, we can determine the optimal density of a
single unit area (cell) and generate the optimal density map of urban area divided by several
cells.

In this paper, based on the ERDEC model, a numerical study is performed with a case
study. Daejeon in South Korea is selected as the study site for applying the ERDEC model to
the real world. The numerical study analyzes the correlations among the parameters of the
ERDEC model, such as regional parameters, technological parameters and coefficient factors.
With real taxi trajectory data and the scenario in which 955 EV taxies are operational, the opti-
mal density maps of CSs are generated using the ERDEC model. Decision makers for the instal-
lation of CSs in local governments can develop a detailed deployment plan by considering
these results.

This study has some limitations; the different conditions in the real world are not satisfied
because the ERDEC is a simplified model. First, this study assumes that the vehicles move in a
vertical or horizontal direction. Because the predominant layouts of the road networks in
urban areas exhibit grid shapes, the proposed method is suitable for urban areas. However, a
more advanced method is needed to examine suburban areas that have grid-type road net-
works. Because the data in the case study are collected from taxis, the results in this study are
dedicated to EV taxis. For general passenger EVs, the same type of data on general vehicles in
each cell is needed. Future studies should analyze other aspects, such as the comparison of the
density result maps of different dates and time periods.

The proposed model can be applied to a relatively extensive range of area to encourage the
use of EVs by reducing the range anxiety in the planning phase. It is more applicable to areas
with a lack of information, such as exact candidate sites for CSs, travel patterns and other EV-
related data. This model can provide an approximate solution with minimum information,
such as the number of vehicles per unit area. Another contribution of this model is the predic-
tion of the benefit of reducing the optimal density and total cost by technological developments
related to EVs, via various combinations of technological parameters.
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Fig 15. The results according to L size.

doi:10.1371/journal.pone.0141307.g015
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